論文名稱:實驗及數值分析三級熱電製冷片在考慮湯木生效應下之製冷性能
Experimental and Numerical Analysis of the Cooling Performance of Three-Stage Thermoelectric Coolers under Thomson Effect
研究生:薛成亮
Cheng-Liang Syue
指導教授:溫昌達
Chang-Da Wen
口試委員:何清政
C.J. Ho
楊天祥
Tian-Shiang Yang
學位類別:碩士
學院:工學院
College of Engineering
系所名稱:機械工程學系碩博士班
Department of Mechanical Engineering
畢業學年度:99
學期:2
論文出版年:100
語文別:英文
論文頁數:132
中文關鍵詞:電子冷卻、熱電製冷片、熱電效應、西貝克效應、皮爾特效應、湯木生效應
英文關鍵詞:Electronic cooling、Thermoelectric cooler、Thermoelectric effect、Seebeck effect、Peltier effect、Thomson effect
本研究透過實驗與數值分析的方法,在考慮湯木生效應下探討三級熱電製冷片其不同排列方式(串聯、並聯與分離)之製冷性能。
研究中控制冷端熱負載和熱端溫度,且於實驗中加入實驗設計法來檢視控制變因的重要性,並藉由移除對製冷影響較少的控制變因來減少實驗的次數,使實驗更有效率。
在實驗中提供三級熱電製冷片測試模組多種不同總電流量和電流比以及不同熱負載,觀察TEC冷端溫度和整體性能係數(COP)與熱阻與比較各種測試模組的性能表現。
本研究中討論三種不同的西貝克係數模型,包括常數西貝克係數模型(CSM)、二階線性多項式西貝克係數模型(PSM)及一階對數線性西貝克係數模型(LLS),並藉由實驗與模擬的結果比較進而找出最佳的西貝克係數模型,且利用數值分析探討湯木生熱的存在是否對冷端溫度的推測有較好的結果。本文最後亦比較了一級、二級與三級熱電製冷模組之製冷性能。
研究中根據實驗與模擬的結果顯示二階線性多項式西貝克係數(PSM)為最佳的西貝克係數模型。分離模式電流比3 : 2 : 1的三級熱電製冷片模組有較好的製冷表現。而內部熱分析指出在特定電流值的範圍內湯木生熱可以增進熱電製冷片的製冷效能。本研究亦提供三級熱電製冷模組在各種不同排列方式下的最大溫度差和相依的最佳電流以及各電流下所能冷卻的熱負載以供實際使用上的參考。最後研究中發現多級熱電製冷模組在較低冷端熱負載下有較大的溫度差。然而在不失去熱電模組的製冷能力下,一級製冷模組可承受較大的冷端熱負載。

In this research, we use experimental and numerical methods to investigate the cooling performance of three-stage thermoelectric module with different arrangements (namely serial, parallel and separate types for varied current ratios) considering Thomson effect.
The cold side heat load and the hot side temperature are chosen as the controlled factors. The design of experiment is applied to inspect the significance of each controlled factors, and therefore the less significant factors are removed to reduce the experimental times.
The experiment provides various total input currents, cold side heat loads and different current ratios to investigate the cold side temperature, the coefficient of performance (COP) and the thermal resistance of three-stage thermoelectric module with different types.
In this study, three different Seebeck coefficient models (Constant Seebeck Model, Quadratic Polynomial Seebeck Model and Log-linear Seebeck Model) are applied to find out the best Seebeck Model and investigate whether the existence of Thomson heat would have better prediction or not. Finally, the cooling performances of one-stage, two-stage and three-stage thermoelectric module are compared.
Results show that the Quadratic Polynomial Seebeck Model (PSM model) is the best Seebeck Model. Overall, the separate type with current ratio 3 : 2 : 1 is the best type of three-stage thermoelectric module. Furthermore, the thermal analysis indicates that the Thomson heat can enhance the cooling performance of thermoelectric module. This study provides the maximum temperature difference and its corresponding optimum input current and the acceptable cold side heat load with each type for practical use. Also, the study finds that the multi-stage thermoelectric module achieves larger temperature difference under lower cold side heat load. However, without losing its cooling ability, the one-stage thermoelectric module can bear more cold side heat load.
摘要............................................................................................................................i
Abstract......................................................................................................................iii
Acknowledgments......................................................................................................v
Contents.....................................................................................................................vi
List of Tables.............................................................................................................x
List of Figures............................................................................................................xii
Nomenclature.............................................................................................................xv
Chapter1. Introduction...............................................................................................1
1-1 Research Background......................................................................................1
1-2 Literature Review............................................................................................2
1-3 Research Motive and Goal...............................................................................9
1-4 Research Construction.....................................................................................11
Chapter 2. Design of Experiment...............................................................................13
2-1 Introduction of Design of Experiment.............................................................13
2-2 Full Factorial Designs......................................................................................14
2-3 Pareto Analysis................................................................................................14
2-4 Analysis of Variance (ANOVA).....................................................................16
2-5 Process of Design of Experiment....................................................................19
Chapter 3. Fundamental Principles............................................................................20
3-1 Irreversible Thermodynamics..........................................................................20
3-2 Onsager’s Reciprocal Relations.......................................................................24
3-3 Thermoelectric Effects.....................................................................................26
3-3.1 Seebeck Effect..........................................................................................26
3-3.2 Peltier Effect.............................................................................................28
3-3.3 Thomson Effect........................................................................................30
3-3.4 Relationships of Thermoelectric Effects...................................................33
3-4 Governing Equation.........................................................................................33
3-5 Thermoelectric thermal resistance...................................................................35
3-6 Thermal Analysis of Three-Stage Thermoelectric Coolers.............................36
Chapter 4. Numerical Methods..................................................................................43
4-1 Seebeck Coefficient Numerical Models..........................................................43
4-2 Assumptions....................................................................................................45
4-3 Numerical Method...........................................................................................46
4-3.1 Constant Seebeck Coefficient Model (CSM)...........................................51
4-3.2 Quadratic Polynomial Seebeck Coefficient Model (PSM).......................53
4-3.3 First-Order Log-Linear Seebeck Coefficient Model (LLS)......................54
4-4 Program Procedures.........................................................................................56
Chapter 5. Experiment...............................................................................................59
5-1 Experimental Structure....................................................................................59
5-1.1 Power Supply............................................................................................59
5-1.2 Data Acquisition System..........................................................................61
5-1.3 Forced Convection Section.......................................................................62
5-1.4 Test Section..............................................................................................62
5-2 Experimental Procedures.................................................................................65
5-2.1 Pre-experiment..........................................................................................65
5-2.2 Main Experiment......................................................................................66
Chapter 6. Results and discussions............................................................................68
6-1 Properties of Thermoelectric cooler................................................................68
6-2 Analysis of Full Factorial Designs..................................................................74
6.3 Experimental Results and Numerical Analysis of Three-Stage Thermoelectric Coolers………………………………………………………79
6-3.1 Comparison of Numerical Result and Experimental Data........................ 82
6-3.2 Experimental Data and Numerical Results of the Maximum Temperature Difference (ΔTmax) and the Maximum COP (COPmax)……86
6-3.3 Internal Thermal Analysis………………………………………………90
6-3.4 Predictions of the Optimum Current (Iopt) and the Maximum Temperature Difference (ΔTmax) ………………………………………98
6-3.5 Analysis of Thermoelectric Thermal Resistance………………………98
6-3.6 Comparison of Result with Different Upper Current Ratios…………… 104
6-3.7 Comparison of Result with Different-Stage Thermoelectric Coolers. …106
Chapter 7. Conclusions and Future Work..................................................................112
7-1 Conclusions......................................................................................................112
7-2 Future work......................................................................................................114
References..................................................................................................................116
Appendix....................................................................................................................121
Appendix A Specifications.....................................................................................122
Appendix B Experimental Data..............................................................................125
Appendix C Uncertainty Analysis...........................................................................131
Vita.............................................................................................................................132
1.Seebeck, T.J., “Magnetische polarization der metalle und erzedurch temperature-differenz. abhand deut,” Akad. Wiss. Berlin, pp. 265-373, 1822.
2.Peltier, J.C., “Nouvelles experiences sur la caloriecete des courans electriques,” Ann. Chem., LVI, pp. 371-387, 1834.
3.Thomson, W., “On a mechanical theory of thermoelectric currents,” Proc. Roy. Soc. Edinburgh, pp. 91-98, 1851.
4.Altekirch, E., Physikalische Zeitschrift, 12, pp. 920-924, 1911.
5.Lars Onsager, “Reciprocal Relations is Irreversible Processes. I.,” Physical Review, Vol. 37, February, 1931.
6.Herbert B. Callen, “The application of Onsager's reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects,” Physical Review, Vol. 73, pp. 1349-1358, 1948.
7.Charles A. Domenicali, “Irreversible thermodynamics of thermoelectric effects in inhomogeneous, anisotropic media,” Physical Review, Vol. 92, pp. 877-881, 1953.
8.Abram Fedorovich Ioffe, Semiconductor thermoelements, and thermoelectric cooling, London :Infosearch, ltd., 1957.
9.M. H. Norwood, “A comparison of theory and experiment for a thermoelectric cooler,” Journal of Applied Physics, Vol. 32, pp. 2559-2563, 1961.
10.Jincan Chen, Zijun Yan, Liqing Wu, “The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator,” American Institute of Physics, J. Appl. Phys., Vol. 79, No. 11, 8823, June, 1996.
11.M. Yamanashi, “A new approach to optimum design in thermoelectric cooling systems,” American Institute of Physics, J. Appl. Phys., Vol. 80, No. 9, November, 1996.
12.X.C. Xuan, K.C. Ng, C. Yap, H.T. Chua, “A general model for studying effects of interface layers on thermoelectric devices performance,” International Journal of Heat and Mass Transfer Vol. 45, pp. 5159-5170, 2002.
13.X. C. Xuan, “Analyses of the performance and polar characteristics of two-stage thermoelectric coolers,” Institute of Physics Publishing, Semiconductor Science Technology, Vol. 17, pp. 414-420, 2002.
14.X. C. Xuan , “On the optimal design of multistage thermoelectric coolers,” Institute of Physics Publishing, Semiconductor Science Technology, Vol. 17, pp. 625-629, 2002.
15.X.C. Xuan, “Optimum design of a thermoelectric device,” Institute of Physics Publishing, Semiconductor Science Technology, Vol. 17, pp. 114-119, 2002.
16.X.C. Xuan, K.C. Ng, C. Yap, H.T. Chua, “The maximum temperature difference and polar characteristic of two-stage thermoelectric coolers,” Cryogenics, Vol. 42, pp. 273-278, 2002.
17.X.C. Xuan, K.C. Ng, C. Yap, H.T. Chua, “Temperature-entropy diagrams for multi-stage thermoelectric coolers,” Institute of Physics Publishing, Semiconductor Science Technology, Vol. 18, pp. 273-277, 2003.
18.Hongkai Lai, Yuzhuo Pan and Jincan Chen, “Optimum design on the performance
parameters of a two-stage combined semiconductor thermoelectric heat pump,” Semiconductor Science and Technology, Vol. 19, pp. 17-22, 2004.
19.Ronggui Yang, Gang Chen, G. Jeffrey Snyder and Jean-Pierre Fleurial, “Multistage thermoelectric microcoolers,” Journal of Applied Physics, Vol. 95, Number 12, pp. 8226-8232, 2004.
20.Marc Hodes, “On One-Dimensional Analysis of Thermoelectric Modules (TEMs),” IEEE Transactions on Components and Packaging Technologies, Vol. 28, No.2, June, 2005.
21.Mei-Jiau Huang, Ruey-Hor Yen and An-Bang Wang, “The influence of the Thomson effect on the performance of a thermoelectric cooler,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 413-418, 2005.
22.Yi-Hsiang Cheng and Chunkuan Shih, “Maximizing the cooling capacity and COP of two-stage thermoelectric coolers through genetic algorithm,” Applied Thermal Engineering, Vol. 26, pp. 937-947, 2006.
23.Kong Hoon Lee and Ook Joong Kim, “Analysis on the cooling performance of the thermoelectric micro-cooler,” International Journal of Heat and Mass Transfer, Vol. 50, pp. 1982-1992, 2007.
24.Jianlin Yu, Hua Zhao and Kangshan Xie, “Analysis of optimum configuration of two-stage thermoelectric modules,” Cryogenics Vol. 47 pp. 89-93, 2007.
25.Lingen Chen, Jun Lia, Fengrui Sun and Chih Wu, “Performance optimization for a two-stage thermoelectric heat-pump with internal and external irreversibilityies,” Applied Energy, Vol. 85 pp. 641-649, 2008.
26.Chien-Yi Du, “Experimental Investigation and Numerical Analysis for One-stage Thermoelectric Cooler under Thomson Effect”, 2008.
27.Osamu Yamashita, “Resultant Seebeck coefficient formulated by combining the Thomson effect with the intrinsic Seebeck coefficient of a thermoelectric element,” Energy Conversion and Management, Vol. 50, pp. 2394-2399, 2009.
28.R. Palacios, A. Arenas, R.R. Pecharromán and F.L. Pagola, “Analytical procedure to obtain internal parameters from performance curves of commercial thermoelectric modules,” Applied Thermal Engineering, Vol. 29, pp. 3501–3505, 2009.
29.Yu-Wei Chang, Chih-Chung Chang, Ming-Tsun Ke, Sih-Li Chen, “Thermoelectric air-cooling module for electronic devices,” Applied Thermal Enginnering, Vol. 29, pp. 2731-2737, 2009.
30.Hsiang-Sheng Huang, Ying-Che Weng, Yu-Wei Chang, Sih-Li Chen, Ming-Tsun Ke, “Thermoelectric water-cooling device applied to electronic equipment,” International Communications in Heat and Mass Transfer, Vol. 37, pp. 140–146, 2010.
31H.Y. Zhang, Y.C. Mui and M. Tarin, “Analysis of thermoelectric cooler performance for high power electronic packages,” Applied Thermal Engineering Vol. 30, pp. 561–568, 2010.
32.Jou-Yun Liu, “A Study on the Performance of Two-stage Thermoelectric Coolers with Different Types under Thomson Effect,” 2010.
33.G.E.P. Box and K.B. Wilson, On the Experimental Attainment of Optimum Conditions (with discussion). Journal of the Royal Statistical Society Series B 13(1) (1951) 1–45.
34.R.A. Fisher, The Design of Experiments, 9th ed., Macmillan Pub Co., 1971.
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-09起公開。