論文名稱:飛秒與奈秒雷射於微奈米加工之研究
Study of Femto/nano-second Laser Micro/nano-scale Machining
研究生:林正祥
Cheng-Hsiang Lin
指導教授:陳顯禎
Shean-Jen Chen
共同指導教授:蔡海龍
Hai-Lung Tsai
口試委員:楊宏智
Hong-Tsu Young
葉則亮
Tse-Liang Yeh
洪基彬
Gi-Bin Hong
張世慧
Shih-Hui Gilbert Chang
李永春
Yung-Chun Lee
學位類別:博士
學院:工學院
College of Engineering
系所名稱:工程科學系碩博士班
Department of Engineering Science
畢業學年度:98
學期:2
論文出版年:99
語文別:英文
論文頁數:134
中文關鍵詞:雷射加工、飛秒雷射、感測器
英文關鍵詞:laser machining、femtosecond laser、sensor
雷射微加工技術已被廣泛應用於工業環境以及學術研究方面,由於奈秒(nanosecond)脈衝雷射具有高加工速率以及較低的操作成本,因此被廣泛應用於工業加工。然而此種雷射系統的缺點為難以加工於可見光到近紅外光波段有極低吸收率的介電材料,此缺點目前已被具有多光子吸收特性的飛秒(femtosecond)超短脈衝雷射系統所克服,飛秒脈衝雷射技術的發展於雷射加工應用方面開啟一個新方向。
本論文著重脈衝雷射加工技術於提高加工精度、提高加工速率、以及感測器的製作等三方面,包含飛秒雷射加工以及奈秒雷射加工。藉由共軛焦(confocal)原理基礎所發展的深度量測系統用於雷射加工應用可彌補一般雷射加工所遇到加工深度未知的問題。由於雷射加工深度會受多變數的影響例如能量密度(fluence)、脈衝寬度、雷射波長等等,若能及時監控加工深度,對於加工精度可有顯著提升。此系統已成功整合於奈秒雷射加工機台之中,且其理想解析度可達0.5微米。更進一步,利用奈秒雷射的瞬間熱量傳遞效應,製造表面分布有高密度解均勻分布的金奈米粒子(nanoparticle)的雷射奈米結構化的試片並應用於表面增強拉曼散射(surface-enhanced Raman scattering,SERS),其增強因子(enhancement factor)於量測分子為Rhodamine 6G且激發光波長為632.8 nm的條件下可達105。
在飛秒雷射加工上,整合聚焦整形技術於三維微透鏡陣列包含圓柱透鏡以及球面透鏡且其陣列分佈為水平或垂直分布可於一感光玻璃基板中被加工出來。此微透鏡陣列的聚焦特性以及成像測試結果也在討論範圍並用於表示此微透鏡陣列的品質。在相同的感光玻璃材料下,一崁入式Fabry-Perot干涉儀應用於液體樣品的折射係數感測器同樣被發展。此外,利用飛秒雷射於銷酸銀溶液的環境下加工矽晶圓基材可製造出表面具有銀奈米粒子的高靈敏度的表面增強拉曼散射晶片。經由參數分析及比較拉曼信號和表面增強拉曼散射信號,其增強因子可達109。最後,整合飛秒雷射以及奈秒雷射所發展出來的雙雷射加工系統於介電材料的加工應用上有很大的增進。通常介電材料難以被其他種類的雷射加工,但是飛秒雷射的加工速度相對於奈秒雷射又顯得略低。應用此雙雷射加工系統加工介電材料,可以輕易達到加工的目的且其加工速度可以大大提升。
Laser micromachining has been widely applied not only for industry but also for research demands. Nanosecond pulse laser systems are popular used in industry due to the high production throughput and low operation cost. However, the significant drawback of the laser systems is difficult to machine dielectric materials due to low absorptivity in wavelength range from visible to near infrared. Currently, the drawback has been addressed by femtosecond pulse lasers via multiphoton absorption induced by extremely high peak power. The femtosecond laser systems have opened a new window in laser micromachining.
In this thesis, pulse laser micromachining technologies including nanosecond laser micromachining as well as femtosecond laser micromachining were investigated and focused on improving the machining accuracy and throughput and developing sensors. A depth measuring technique for laser hole drilling was developed via the confocal principle to overcome the issue of the unknown machining depth during the laser machining because the machining depth is multiparameter-dependent factors such as laser fluence, pulse duration, wavelength, etc. The developed depth measuring system was successfully integrated into a nanosecond micromachining system with a resolution of 0.5 μm. Furthermore, employing the rapid thermal delivering characteristic of nanosecond laser pulses, a laser-nanostructured substrate with dense and high uniformity gold nanoparticles on the surface was fabricated by the nanosecond laser annealing of a gold thin film coated on silicon wafer. The laser machining substrate is utilized for surface-enhanced Raman scattering (SERS). An enhancement factor of 105 by comparing the normal Raman and SERS signals was demonstrated for the Rhodamine 6G sample at 632.8 nm wavelength excitation.
In the femtosecond machining, the machining with focus shaping was utilized to fabricate 3D microlens arrays including cylindrical lens and spherical lens at horizontal and vertical arrangements in photosensitive glass. Focusing quality and imaging testing were conducted to examine the performances of the fabricated microlens arrays. In the same photosensitive glass material, an optical fiber assisted Fabry-Perot interferometer embedded in a glass chip as a refractive index sensor for liquid samples was also developed. By machining silicon wafer substrates in silver nitrate solution with the femtosecond lasers, high sensitivity SERS substrates were produced and the enhancement factor was calculated as 109. Finally, a femto/nano-second dual-beam micromachining system has been developed and benefits the ablation efficiency on dielectric materials which are usually difficult to machine by other types of lasers such as continuous-wave laser and single nanosecond pulse laser.
Abstract I
摘要 III
Content VI
Table Captions X
Figure Captions XI
Chapter 1 Introduction 1
1.1 Brief 1
1.2 Motivations 2
1.3 Outlines 3
Chapter 2 Mechanisms of Laser Micromachining 5
2.1 Nanosecond laser regime 5
2.2 Femtosecond laser regime 9
Chapter 3 Nanosecond Laser Machining 15
3.1 Nanosecond laser micromachining system 15
3.2 Depth measurement for micro-holes drilled by lasers 17
3.2.1 System setup 19
3.2.2 Experiments and results 26
3.3 Laser-treated substrate with nanoparticles for surface-enhanced Raman scattering 32
3.3.1 Fabrication 33
3.3.2 Results 34
3.4 A method to fabricate 2D nanoparticle arrays 41
3.4.1 Experimental results 43
3.4.2 Results and discussion 44
Chapter 4 Femtosecond Laser Machining 57
4.1 Femtosecond laser micromachining system 57
4.2 Fabrication of microlens array in photosensitive glass by femtosecond laser direct writing 58
4.2.1 Foturan glass material 60
4.2.2 Processing of Foturan glass 61
4.2.3 Microlens array fabrication 61
4.2.4 Results and discussion 66
4.2.4.1 Cylindrical microlens arrays 66
4.2.4.2 Spherical microlens arrays 70
4.2.4.3 Imaging testing 72
4.2.4.4 Potential applications 73
4.3 Fabry-Perot interferometer embedded in a glass chip fabricated by femtosecond laser 75
4.3.1 Theory 75
4.3.2 Design and fabrication 79
4.3.3 Results 80
4.4 One-step fabrication of nanostructures by femto- second laser for surface-enhanced Raman scattering 87
4.4.1 Experimental procedures 89
4.4.1.1 Sample preparation 89
4.4.1.2 SERS measurement 89
4.4.2 Results and discussion 90
4.4.2.1 Evaluation of nanostructures 90
4.4.2.2 Parametric study 95
4.4.2.3 Estimation of enhancement factor 97
Chapter 5 Dual-beam Laser Micromachining 101
5.1 System setup and experimental procedures 102
5.2 Experimental results 105
Chapter 6 Conclusions 109
References 111
CURRICULUM VITAE 131
1. M. C. Gower, “Industrial applications of laser micromachining,” Opt. Express 7, 56-67 (2000).
2. F. Gires and P. Tournois, “Interféromètre utilisable pour la compression d'impulsions lumineuses modulées en fréquence,” Comp. Rend. 258, 6112-6115 (1964).
3. J. A. Giordmaine, M. A. Duguay, and J. W. Hansen, “Compression of optical pulses,” IEEE J. Quantum Electron. 4, 252-255 (1968).
4. R. A. Fisher, P. L. Kelley, and T. K. Gustafson, “Subpicosecond pulses generation using the optical Kerr effect,” Appl. Phys. Lett. 14, 140-143 (1969).
5. W. Denk, J. Strickler, and W. Webb, “Two-photon laser scanning fluorescence microscopy,” Sci. 248, 4951 (1990).
6. P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,“ J. Biomed. Opt. 6, 277-286 (2001).
7. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071-3073 (1994).
8. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of submicron holes using a femtosecond laser at 800-nm,” Opt. Commun. 114, 106-110 (1995).
9. A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98, 033302 (2005).
10. D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimentional microchannels in glass,” Appl. Phys. A 79, 605-612 (2004).
11. J. Zhang, K. Sugioka, and K. Midorikawa, “High-quality and high-efficiency machining of glass materials by laser-induced plasma-assisted ablation using conventional nanosecond UV, visible, and infrared lasers,” Appl. Phys. A 69, S877-S882 (1999).
12. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation threshold for metals and dielectrics,” Phys. Plasmas 9, 949-957 (2002).
13. R. R. Gattass, and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photonics 2, 219-225 (2008).
14. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109-115 (1996).
15. C. Körner, R. Mayerhofer, M. Hartmann, and H. W. Bergmann, “Physical and material aspects in using visible laser pulses of nanosecond duration for ablation,” Appl. Phys. A 63, 123-131 (1996).
16. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 2716-2722 (1997).
17. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224-227 (1998).
18. L. Jiang and H. L. Tsai, “Prediction of crater shape in femtosecond laser ablation of dielectrics,” J. Phys. D: Appl. Phys. 37, 1492-1496 (2004).
19. M. Bolle, S. Lozare, M. Le Blanc, and A. Wilmes, “Submicron periodic structures produced on polymer surfaces with polarized excimer laser ultraviolet radiation,” Appl. Phys. Lett. 60, 674-676 (1992).
20. H. Niino, M. Nakano, S. Nagano, A. Yabe, and T. Miki, “Periodic morphological modification developed on the surface of polyethersulfone by XeCl excimer laser photoablation,” Appl. Phys. Lett. 55, 510-512 (1989).
21. P. E. Dyer and J. Farley, “Periodic surface structures in the excimer laser ablative etching of polymers,” Appl. Phys. Lett. 57, 765-767 (1990).
22. J. F. Young, J. E. Sipe, J. Preston, and H. M. Driel, “Laser‐induced periodic surface damage and radiation remnants,” Appl. Phys. Lett. 41, 261-264 (1982).
23. H. M. Phillips, D. L. Callahan, and R. Sauerbrey, “Sub‐100 nm lines produced by direct laser ablation in polyimide,” Appl. Phys. Lett. 58, 2761-2763 (1991).
24. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 6803-6810 (1999).
25. E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,” J. Appl. Phys. 85, 4213-4221 (1999).
26. B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, “Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B 65, 214303-214313 (2002).
27. T. Q. Qiu and C. L. Tien, “Short-pulse laser heating on metals,” Int. J. Heat Mass Transfer 35, 719-726 (1992).
28. D. Y. Tzou, J. K. Chen, and J. E. Beraun, “Hot-electron blast induced by ultrashort-pulsed lasers in layered media,” Int. J. Heat Mass Transfer 45, 3369-3382 (2002).
29. S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039-1068 (1989).
30. D. V. Linde and H. Schüler, “Breakdown threshold and plasma formation in femtosecond laser-solid interaction,” J. Opt. Aoc. Am. B 13, 216-223 (1996).
31. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulse,” IEEE J. Quant. Elect. 33, 1706-1716 (1997).
32. F. Ladieu, P. Martin, and S. Guizard, “Measuring thermal effects in femtosecond laser-induced breakdown of dielectrics,” Appl. Phys. Lett. 81, 957-959 (2002).
33. P. Gibbon, and E. Forster, “Short-pulse laser-plasma interaction,” Plasma Phys. Control Fus. 38, 769-793 (1996).
34. M. Mullenborn, H. Dirac, J. W. Petersen, and S. Bouwstra, “Fast three-dimensional laser micromachining of silicon for microsystems,” Sens. Actuators A 52, 121-125 (1996).
35. M. A. Roberts, J. S. Rossien, P. Bercier, and H. Girault, “UV laser machined polymer substrates for the development of microdiagnostic system,” Anal. Chem. 69, 2035-2042 (1997).
36. C. A. McNally, J. Folkes, and I. R. Pashby, “Laser drilling of cooling holes in aeroengines: state of the art and future challenges,” Mater. Sci. Technol. 20, 805-813 (2004).
37. J. V. Winger, H. J. Frankena, and C. Smorenburg, “Linear approximation for measurement errors in phase shitting interferometry,” Appl. Opt. 30, 2718-2729 (1991).
38. B. L. Danielson and C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30, 2975-2979 (1991).
39. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quant. 5, 1205-1215 (1999).
40. J. Zhang and L. Cai, “An autofocusing measurement system with a piezoelectric translator,” IEEE-ASME T. Mech. 2, 213-216 (1997).
41. F. Quercioli, B. Tiribilli, C. Ascoli, P. Baschieri, and C. Frediani, “Monitoring of an atomic force microscope cantilever with a compact disk pickup,” Rev. Sci. Instrum. 70, 3620-3624 (1999).
42. J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, and C. W. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22, 543-545 (1997).
43. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, and A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648-650 (1998).
44. G. Ku and L. V. Wang, “Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent,” Opt. Lett. 30, 507-509 (2005).
45. R. Petkovsek, I. Panjan, A. Babnik, and J. Mozina, “Optodynamic study of multiple pulses micro drilling,” Ultrasonics 44, e1191-e1194 (2006).
46. S. Strgar and J. Mozina, “An optodynamic determination of the depth of laser-drilled holes by the simultaneous detection of ultrasonic waves in the air and in the workpiece,” Ultrasonics 40, 791-795 (2002).
47. R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59, 427-471 (1996).
48. M. Fleischmann, P. J. Hendra and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163-166 (1974).
49. D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman electrochemistry part I. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1-20 (1977).
50. C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructrued SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24, 216-221 (2008).
51. D. Meason, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguide,” Appl. Phys. Lett. 90, 211107 (2007).
52. L. Su, C. J. Rowlands, and S. R. Elliott, “Nanostructures fabricated in chalcogenide glass for use as surface-enhanced Raman scattering substrates,” Opt. Lett. 34, 1645-1647 (2007).
53. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
54. R. J. C. Brown and J. T. Milton, “Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 39, 1313-1326 (2008).
55. M. Kerker, “Effect of optical constants on calculated values of surface-enhanced Raman scattering,” J. Opt. Soc. Am. B 2, 1327-1329 (1985).
56. S. J. Henley, J. D. Carey, and S. R. P. Silva, “Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films,” Phys. Rev. B 72, 195408 (2005).
57. L. Kondic and J. A. Diez, “Nanoparticle assembly via the dewetting of patterned thin metal lines: Understanding the instability mechanisms,” Phys. Rev. E 79, 026302 (2009).
58. C. Favazza, J. Trice, H. Krishna, and R. Kalyanaraman, “Laser-induced short- and long-range orderings of Co nanoparticles on SiO2,” Appl. Phys. Lett. 88, 153118 (2006).
59. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668-677 (2003).
60. Y. J. Liu, Z. Y. Zhang, Q. Zhao, and Y. P. Zhao, “Revisiting the separation dependent surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 173106 (2008).
61. P. A. Temple and C. E. Hathaway, “Multiphoton Raman spectrum of silicon,” Phys. Rev. B 7, 3685-3697 (1973).
62. R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. 1. Ag island films and Ag film over polymer nanosphere surface supported on glass,” J. Chem. Phys. 99, 2101-2115 (1993).
63. W. Wang, Y. Wang, Z. Dai, Y. Sun, and Y. Sun, “Nonlinear optical properties of periodic gold nanoparticle arrays,” Appl. Surface Sci. 253, 4673-4676 (2007).
64. H. Shen, B. Cheng, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 4274-4277 (2006).
65. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field distribution in two dimensionally arrayed gold nanoparticles on platinum substrate,” Appl. Phys. Lett. 90, 123106 (2007).
66. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153-158 (2004).
67. G. Duan, W. Cai, Y. Luo, Y. Li, and Y. Lei, “Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering,” Appl. Phys. Lett. 89, 181918 (2006).
68. C. L. Haynes and R. P. Van Duyne, “Dichroic optical properties of extended nanostructures fabricated using angle-resolved nanosphere lithography,” Nano Lett. 3, 939-943 (2003).
69. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kill, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337-7342 (2003).
70. J. Sort, H. Glaczyuska, U. Ebels, B. Dieny, M. Giersig, and J. Rybczynski, “Exchange bias effects in submicron antiferromagnetic-ferromagnetic dots prepared by nanosphere lithography,” J. Appl. Phys. 95, 7516-7518 (2004).
71. S. Enoch, R. Quidant, and G. Badenes, “Optical sensing based on plasmon coupling in nanoparticle arrays,” Opt. Express 12, 3422-3427 (2004).
72. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007).
73. M. Winzer, M. Kleiber, N. Dix, and R. Wiesendanger, “ Fabrication of nano-dot- and nano-ring-arrays by nanosphere lithography,” Appl. Phys. A 63, 617-619 (1996).
74. H. A. Bullen and S. J. Garrett, “TiO2 nanoparticle arrays prepared using a nanosphere lithography technique,” Nano Lett. 2, 739-745 (2002).
75. F. Sun, W. Cai, Y. Li, G. Duan, W. T. Nichols, C. Liang, N. Koshizaki, Q. Fang, and I. W. Boyd, “Laser morphological manipulation of gold nanoparticles periodically arranged on solid supports,” Appl. Phys. B 81, 765-768 (2005).
76. D. R. S. Cumming, S. Thoms, S. P. Beaumont, and J. M. R. Weaver, “Fabrication of 3 nm wires using 100 keV electron beam lithography and poly(methyl methacrylate) resist,” Appl. Phys. Lett. 68, 322-324 (1996).
77. D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86, 244103 (2005).
78. D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and L. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89, 193107 (2006).
79. S. Inasawa, M. Sugiyama, and Y. Yamaguchi, “Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting,” J. Phys. Chem. B 109, 3104-3111 (2005).
80. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442, 412-418 (2006).
81. P. S. Dittrich, K. Tachikawa, and A. Manz, “Micro total analysis systems. Latest advancements and trends,” Anal. Chem. 78, 3887-3908 (2006).
82. Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys. A 85, 11-14 (2006).
83. Y. Bellouard, A. A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13, 6635-6644 (2005).
84. K. W. Ro, K. Lim, B. C. Shim, J. H. Hahn, “Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis,” Anal. Chem. 77, 5160-5166 (2005).
85. K. S. Hong, J. Wang, A. Aharonov, D. Chandra, J. Aizenberg, and S. Yang, “Tunable microfluidic optical devices with an integrated microlens array,” J. Micromech. Microeng. 16, 1660-1666 (2006).
86. S. Park, Y. Jeong, J. Kim, K. Choi, H. C. Kim, D. S. Chung, and K. Chun, “Fabricaton of poly(dimethylsiloxane) microlens for laser-induced fluorescence detection,” Jpn. J. Appl. Phys. 45, 5614-5617 (2006).
87. A. Akatay and H. Urey, “Design and optimization of microlens array based high resolution beam steering system,” Opt. Express 15, 4523-4529 (2007).
88. C. P. B. Siu, H. Zeng, and M. Chiao, “Magnetically actuated MEMS microlens scanner for in vivo medical imaging,” Opt. Express 15, 11154-11166 (2007).
89. M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol-gel material by direct laser writing and its application in optical coupling,” J. Opt. A 6, 94-97 (2004).
90. G. Y. Yoon, T. Jitsuno, M. Nakatsuka, and S. Nakai, “Shack Hartmann wave-front measurement with a large f-number plastic microlens array,” Appl. Opt. 35, 188-182 (1996).
91. V. Bardinal, E. Daran, T. Leichle, C. Vergnenegre, C. Levallois, T. Camps, V. Conedera, J. B. Doucet, F. Carcenac, H. Ottevaere, and H. Thienpont, “Fabrication and characterization of microlens arrays using a cantilever-based spotter,” Opt. Express 15, 6900-6907 (2007).
92. P. Nussbaum, R. Volkel, H.P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and Microsystems,” Pure Appl. Opt. 6, 617-636 (1997).
93. J. Yao, Z. Cui, F. Gao, Y. Zhang, Y. Guo, C. Du, H. Zeng, and C. Qiu, “Refractive micro lens array made of dichromate gelatin with gray-tone photolithography,” Microelectron. Eng. 57-58, 729-735 (2001).
94. Y.Q. Fu, N. Kok, and A. Bryan, “Microfabrication of microlens array by focused ion beam technology,” Microelectron. Eng. 54, 211-221 (2000).
95. A. Y. Smuk and N. M. Lawandy, “Direct laser fabrication of dense microlens arrays in semiconductor-doped glass,” J. Appl. Phys. 87, 4026-4030 (2000).
96. S. Kawata, H.B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697-698 (2001).
97. M. Masuda, K. Sugioka, Y. Cheng, T. Hongo, K. Shihiyama, H. Takai, I. Miyamoto, and K. Midorikawa, “Direct fabrication of freely movable microplate inside photosensitive glass by femtosecond laser for lab-on-chip application,” Appl. Phys. A 78, 1029-1032 (2004).
98. Y. Cheng, K. Sugioka, and K. Midorikawa, “Freestanding optical fibers fabricated in a glass chip using femtosecond laser micromachining for lab-on-a-chip application,” Opt. Express. 13, 7225-7232 (2005).
99. T. Hongo, K. Sugioka, H. Niino, Y. Cheng, M. Masuda, I. Miyamoto, H. Takai, and K. Midorikawa, “Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser,” J. Appl. Phys. 97, 063517 (2005).
100. F. L. Pedrotti, L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics (Benjamin Cummings, New Jersey, 2006).
101. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28, 55-57 (2003).
102. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5 um by astigmatic beam focusing,” Opt. Lett. 27, 1938-1940 (2002).
103. K. J. Moh, Y. Y. Tan, X. C. Yuan, D. K. Y. Low, and Z. L. Li, “Influence of diffraction by a rectangular aperture on the aspect ratio of femtosecond direct-write waveguides,” Opt. Express 13, 7288-7297 (2005).
104. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett. 28 1144-1146 (2003).
105. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
106. Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol. 12, 227-237 (2006).
107. J. L. Elster, M. E. Jones, M. K. Evans, S. M. Lenahan, and C. A. Boyce, “Optical fiber extrinsic Fabry-Perot interferometric (EFPI)-based biosensors,” Proc. SPIE 3991, 105-112 (2000).
108. Y. Zhang, H. Shibru, K. L. Cooper, and A. Wang, “Miniature fiber optic multicavity Fabry-Perot interferometric biosensor,” Opt. Lett. 30, 1021-1023 (2005).
109. C. B. Schaffer, E. Mazur, and J. A. Squier, “Micromaching and material change characterization using femtosecond laser oscillators,” Proc. SPIE 4633, 112-118 (2002).
110. Y. J. Rao, M. Deng, D. W. Duan, X. C.Yang, T. Zhu, and G. H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15, 14123-14128 (2007)
111. T. Wei, Y. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33, 536-538 (2008).
112. T. Wei, Y. Han, H. L. Tsai, H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16, 5764-5769 (2008).
113. B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165-3171 (2003).
114. T. Hongo, K. Sugioka, H. Niino, Y. Cheng, M. Masuda, I. Miyamoto, H. Takai, and K. Midorikawa, “Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser,” J. Appl. Phys. 97, 063517 (2005).
115. G. Z. Xiao, A. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sensor Actuat. A 118, 177-182 (2005).
116. H. E. Kashef, “The necessary requirements imposed on polar dielectric laser dye solvents,” Physica B 279, 295 (2000).
117. P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677 (1990).
118. P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391-3395 (1982).
119. H. Hada, Y. Yonezawa, A. Yoshida, and A. Kurakake, “Photoreduction of silver ion aqueous and alcoholic solutions,” J. Phys. Chem. 80, 2728-2731 (1976).
120. R. Sato-Berrú, R. Redón, A. Vázquez-Olmos, and J. M. Saniger, “Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy,” J. Raman Spectrosc. 40, 376-380 (2009).
121. X. Tian, K. Chen, and G. Gao, “Seedless, surfactantless photoreduction synthesis of silver nanoplates,” Mater. Lett. 60, 828-830 (2006).
122. H. T. Tung, I. G. Chen, J. M. Song, and C. W. Yen, “Thermally assisted photoreduction of vertical silver nanowires,” J. Mater. Chem. 19, 2386-2391 (2009).
123. Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing,“ Jpn. J. Appl. Phys. 47, 189-192 (2008).
124. S. Maruo and T. Saeki, “Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix,” Opt. Express 16, 1174-1179 (2008).
125. A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89, 113102 (2006).
126. S. J. Henley and S. R. P. Silva, “Laser direct write of silver nanoparticles from solution onto glass substrates for surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 91, 023107 (2007).
127. T. Wei, Y. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33, 536-538 (2008).
128. C. H. Lin, L. Jiang, H. Xiao, Y. H. Chai, S.-J. Chen, and H. L. Tsai, “Fabry-Perot interferometer embedded in a glass chip fabricated by femtosecond laser,” Opt. Lett. 34, 2408-2410 (2009).
129. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon- modification thresholds and morphology,” Appl. Phys. A 74, 19-25 (2002).
130. C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635-1641 (2004).
131. Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
132. E. D. Diebold, N. H. Mark, S. K. Dooen, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir 25, 1790-1794 (2009).
133. M. Futamata and Y. Maruyama, “Electromagnetic and chemical interaction between Ag nanoparticles and adsorbed rhodamine molecules in surface-enhanced Raman scattering,” Anal. Bioanal. Chem. 388, 89-102 (2007).
134. Y. Han, C. H. Lin, H. Xiao, and H. L. Tsai, “Femtosecond laser-induced silicon morphology in water confinement,” Microsyst. Technol. 15, 1045-1049 (2009).
135. T. Kondo, K. Nishio, and H. Masuda, “Surface-enhanced Raman scattering in multilayered Au nanoparticles in anodic porous alumina matrix,” Appl. Phys. Express 2, 032001 (2009).
136. I. W. Sztainbuch, “The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement,” J. Chem. Phys. 125, 124707 (2006).
137. P. A. Temple and C. E. Hathaway, “Multiphonon Raman spectrum of silicon,” Phys. Rev. B 7, 3685-3697 (1973).
138. G. L. Liu and L. P. Lee, “Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics,” Appl. Phys. Lett. 87, 074101 (2005).
139. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071-3073 (1994).
140. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of submicron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114, 106-110 (1995).
141. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219-225 (2008).
142. L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87, 151104-151106 (2005).
143. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076-4079 (1998).
144. L. Jiang and H. L. Tsai, “Improvements on two-temperature models and its applications in ultrashort laser damage of metal films,” ASME J. Heat Transfer 127, 1167-1173 (2005).
145. B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, “Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B 65, 214303-214313 (2002).
146. K. Sugioka, S. Wada, H. Tashiro, K. Toyoda, Y. Ohnuma, and A. Nakamura, “Multiwavelength excitation by vacuum-ultraviolet beams coupled with fourth harmonics of a Q–switched Nd:YAG laser for high-quality ablation of fused quartz,” Appl. Phys. Lett. 67, 2789-2791 (1995).
147. J. Zhang, K. Sugioka, T. Takahashi, K. Toyoda, and K. Midorikawa, “Dual-beam ablation of fused silica by multiwavelength excitation process using KrF excimer and F2 lasers,” Appl. Phys. A 71, 23-26 (2000).
148. Y. P. Deng, X. H. Xie, H. Xiong, Y. X. Leng, C. F. Cheng, H. H. Lu, R. X. Li, and Z. Z. Xu, “Optical breakdown for silica and silicon with double femtosecond laser pulses,” Opt. Express 13, 3096-3103 (2005).
149. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248-2251 (1995).
150. L. Jiang and H. L. Tsai, “Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse,” Int. J. Heat Mass Transfer 48, 487-499 (2005).
  • 同意授權校內瀏覽/列印電子全文服務,於2010-08-02起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-08-02起公開。